The Fast Startup
Landscape is Expanding!

Dan Heidinga

Principal Software Engineer
¥ @danheidinga
DanHeidinga

kcpeppe
@kcpeppe

&

I’m failing to understand all of the focus on the vanity
metric of JVM startup time. The JVM calls main(String[]
args) within 4-6ms on modern hardware. Implies, the
remaining startup time is on how the app is deployed
and/or app init work, none of which is controlled by the

JVM.

12:56 PM - Sep 9, 2022 - Twitter Web App

https.//twitter.com/kcpeppe/status/1568282140869275648

2

»
)

Dan Heidinga @DanHeidinga - Sep 9

y
Replying to @kcpeppe

Time to first request is definitely more interesting than JVM startup time. |
think that's what most people mean when they say "startup”.

Finding ways to shift deployment & app init work out of the critical
deployment path (ie: scaling out) is the area to improve.

O 1 (&) O 10 A [

kcpeppe @kcpeppe - Sep 9

Right, but it’s not JVM startup that is the issue, it’s often a combo of
container and application startup. Unfortunately, language is important
because it affect how people think about the problems.

https:/twitter.com/DanHeidinga/status/15684251835384/0913

Fast Startup

Why do we care about startup? More deployments!

Cloud CI/CD Serverless

Microservices Frequent deployments cgi-bin model of deployment

Horizontal scaling Scale to zero

RAM x CPU = $%$

Startup of a typical JavaEE/JakartaEE framework

100+ + Classloaders
1000+ + Classes
1000+ + <clinit>

100+ Classloaders
1000+ Classes

3 Classloaders

1000+ <clinit>

Serving actual requests

~500 Classes

~160 <clinit> :

| |
I I p A

Build time Run time | I

N J
Y
JVM to main _ J

~

Framework initialized

N /
Y

Application initialized

“There are more [sources of delay] than are dreamt of in your philosophy
- Hamlet (with apologies)

14

100+ + Classloaders
1000+ + Classes
1000+ + <clinit>

100+ Classloaders
1000+ Classes

3 Classloaders

1000+ <clinit>

Serving actual requests

~500 Classes
~160 <clinit> :
| |
I I p A
Build time | Scaling overhead Run time I |
Copy time
Container start \ ~ J
Provision services
JVM to main _ J

~

Framework initialized

N /
Y

Application initialized

Java: Dynamic Island

00

public class HelloWorld {

public static void main(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> System.out.println("HellowWorld");
R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Random = " + myRand);

& RedHat
https://friendlystock.com/tropical-island-free-vector-clipart/

10

Java: Dynamic Island

Dynamic classloading

S
Y

public class HelloWorld {

public static void main(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> System.out.println("HellowWorld");

R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Random = " + myRand);

https://friendlystock.com/tropical-island-free-vector-clipart/

n

Java: Dynamic Island

Dynamic classloading

Class initialization

S
Y

public class HelloWo:'ld {

public static/.oid main(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> System.out.println("HellowWorld");

R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Random = " + myRand);

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

Dynamic classloading

Class initialization
Field and Method
resolution

7
©y

public class HelloWo:ld {

public static/roie"mafddi(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> System.out.println("HelloWorld");

R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Random = " + myRand);

12

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

Dynamic classloading

Class initialization
Field and Method
resolution

7
©y

public class HelloWo:ld {

public static/roie"mafddi(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> Svstem.out.println("HelloWorld");

) MethodHandles
rl.wiurrr]\(F){z;nd ThreadLocalRandom.current().nextInt() Reflection

pn m-cu -nex ’ Dynamic class generation
System.out.println("Random = " + myRand); y 9

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

Dynamic classloading

Class initialization
Field and Method
resolution

)
Ly

public class HelloWo:ld {

public static/roie"mafddi(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> Svstem.out.println("HelloWorld");

) MethodHandles
rl.wiurrr]\(F){z;nd ThreadLocalRandom.current().nextInt() Reflection

h y m.cu .) Dynamic class generation
System.out.println("Ranaom-=_" + myRand); y 9

Dynamic classloading

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

Dynamic classloading

Class initialization
Field and Method
resolution

public class HelloWo:ld {

public static/roie"mafddi(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> Svstem.out.println("HelloWorld");

) MethodHandles
"Fl.wiun(F){z;nd ThreadLocalRandom.current().nextInt() Reflection

tht Ay m-cu -Nex ’ Dynamic class generation
System.out.println("Raidtm-=_" + my and); y 9

Dynamic classloading

Class initialization

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

Dynamic classloading

Class initialization

Field and Method
resolution

public class HelloWo:ld {

public static/roie"mafddi(String... args) throws Exception {
System.ouc.,priptin(*~~Start--"):

Runnable r = () -> Svstem.out.println("HelloWorld");

MethodHandles
Reflection
Dynamic class generation

R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Ranaomn-=_" + my and);

Dynamic classloading

Class initialization

Interpretation Agents
i Profiling o o Redefining classes
Dynamic compilation (and recompilation) Hooking events & RedHat

https://friendlystock.com/tropical-island-free-vector-clipart/

17

Java: Dynamic Island

Java's extremely dynamic nature is partly to blame for the “slow to start” complaints

https://friendlystock.com/tropical-island-free-vector-clipart/

Always a little jealous of static island

https://friendlystock.com/tropical-island-free-vector-clipart/
https://vectorportal.com/vector/spyglass-icon-vector-clip-art/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Originally because of footprint!

Process A Plysical Manory

https.//security.cs.pub.ro/summer-school/wiki/session/03

https:/friendlystock.com/tropical-island-free-vector-clipart/

https://friendlystock.com/tropical-island-free-vector-clipart/

20

Shared Class MetaData

Java Java Java Java
=
—

N * JVMs + 1* Shared MetaData = memory footprint savings

Meta data archives enable other optimizations

Start using these features today if not already!

Open)DK

CDS / AppCDS / DynamicCDS

Pregenerated list of classes

Dynamic set of classes at shutdown

And cached Java Objects for faster startup

21

1J9

SharedClasses

Dynamic set of classes from
e defaultloaders,

e URLClassloader and

e from opted-in custom loaders

And dynamic AOT for faster startup

CDS: Archived Heaps

ic native void initializeFromArchive(Class<?> c);

CDS.initializeFromArchive(IntegerCache.class);
int size = (high - low) + 1;

static native void defineArchivedModules(ClasslLoader

if (archivedCache == null || size > archivedCache.length) {
Integer[] ¢ = new Integer[sizel;
int j = low;
for(int i = 0; i < c.length; i++) {

tic native long getRandomSeedForDumping(); cli] = new Integer(j++);

}.
archivedCache = c;

s

cache = archivedCache;

SharedClasses: dynamic AOT

[——
ROM Classes

$ java -Xshareclasses ...

24

New phases: cold vs warm runs

25

New phases: cold vs warm runs

5

Build time Run time

26

New phases: cold vs warm runs

5

O

Build time

Run time

Container deployments are immutable!
Every runis a “first run”

No warm runs apart from what happened at build time

Using these tools involves more work in the build phase!

& RedHat

27

The three essentials for fast startup

Starting to appear in various forms!

Cached
Class —>
metadata

Heap

. —>
archives

What would static Java look like?

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

29

Java: Static Island?

00

public class HelloWorld {

public static void main(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> System.out.println("HellowWorld");
R EtUn) s

int myRand = ThreadLocalRandom.current().nextInt();
System.out.println("Random = " + myRand);

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Static Island?

BuildTime Classloading

Dynap=—"<assloading

Class initialization??? Everything resolved at compile time

Fie?%!ethod
resolution

)
Ly

public class HelloWo:ld {
public static/.oig"maddi(String... args) throws Exception {
System.out.println("--Start--");

Runnable r = () -> Svstem.out.println("HellowWorld"); MethodHandles Needs to be

r'iun(g{; d = ThreadLocalRand t().nextInt() ReﬂeCtio,En = pre-configured
int myRand = ThreadLocalRandom.curren .nextIn . Dvnami eration
System.out.println("Ranaomn-=_" + my and); y

Dynamic=""=<loading

Class initialization???

L3 L] ?
Int etation Ahead of time compiled Service providerss?
Profi Age Class generators?
30 . T g classes
Dy ic compila (and recompilation) oki ents Module Layers? & RedHat

https://friendlystock.com/tropical-island-free-vector-clipart/

31

What would static Java look like?

e Allclasses - application & class library - available at build time
o No runtime class generation!
o Closed world

o Classloaders?

e Compiled to native code at build time

o No decompilation / recompilation
o Class initialization checks remain in the compiled code

o AQOT "guesses” about what will happen... and where it will run

o Profiling?

https://friendlystock.com/tropical-island-free-vector-clipart,
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F %2Fcr.openjdk.java.net%2F ~jeffo

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Java challenges

e What about classloaders?
o Classes are available at build time... only class/module path?
o How does this work with application specific loaders?

o No (runtime) generated codel!

e Native code is 3-5x larger than bytecode
o Needsome way to trim dead code
o Without removing indirectly accessed code (reflection /
methodhandles)

e And it would be nice to initialize some of those classes at buildtime

32

https://friendlystock.com/tropical-island-free-vector-clipart, ‘ Red Hat
-/ wiki. jdk. i iew= %3A%2F % jdk.j 9 jeff9 9 9 i

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Java bytecode

native image
application points-to
> \ (’ analysis ahead-of-time 1 code in
libraries R heap compilation text section

JDK —— image heap image heap in

P L run writing ”| data section

initializations

VM

Virtuous cycle:

e Points-to analysis allows dead code elimination (DCE)
e Heap snhapshotting allows initializing code at buildtime
e Running class initialization at buildtime allows more DCE (ie: <clinit> methods)

e ..andrepeat

33

& RedHat

Source: Initialize Once, Start Fast: Application Initialization at Build Time (Wimmer et al. OOPSLA 2019)

http://www.christianwimmer.at/Publications/Wimmer19a/Wimmer19a.pdf

Static Java: the question of class initialization

am
000

public class Foo {

static final String NAME =

lIFOOll;

static final VarHandle NAME_GETTER;

static final long start =

static {
try {

System.currentTimeMillis();

NAME_GETTER = MethodHandles

. lookup().findStaticVarHandle(Foo.class,

} catch(Throwable t) {

throw new RuntimeException(t);

}

new Thread(Helper::run).start();

34

"NAME", String.class);

When to initialize this class?
o Buildtime?
o Runtime?

o Both (aka re-initialize)?
Developer needs to decide for
each class when it should be

initialized

Default was buildtime, then

runtime, soon to be reinitialize

‘ RedHat

i B - R—
- X -
F , .
’ Tl ar' : LS '
v? E -
: - - ’
v > v .
£
& A

https://www.rawpixel.com/image/447646/free-photo-image-noodles-asian-food-pho-soup

Static Java: Substitutions

398 @TargetClass(className = "java.io.UnixFileSystem")
399 @Platforms({Platform.LINUX.class, Platform.DARWIN.class})
400 final class Target_java_io_UnixFileSystem { ® Essential mechanism to ”fix" Code
401
402 Alias @InjectAccessors(UserDirAccessors.class) // H H RS Sy H H
o . to support buildtime initialization

403 @TargetElement(onlyWith = JDK11OrLater.class)//
404 private String userDir;
405
406 @Alias @RecomputeFieldValue(kind = Kind.NewInstance, declClassName = "java.io.ExpiringCache") //
407 private Target_java_io_ExpiringCache cache;
408 e Easy to change the meaning of the
409 /%
410 * The prefix cache on Linux/Mac0S only caches elements in the Java home directory, which does program by break|ng |nvar|ant5
411 * not exist at image runtime. So we disable that cache completely, which is done by
412 * substituting the value of FileSystem.useCanonPrefixCache to false in the substitution below. o) Dynam|c VS Stat|C d|Spar|‘ty
413 *x/
414 @Delete //
415 private String javaHome;
41

§ 7 e Easytogetoutofsyncas
417 *x Ideally, we would mark this field as @Delete too. However, the javaHomePrefixCache is cleared
418 * from various methods, and we do not want to change those methods. H :

' maintained separately from the

419 */ p y
420 @Alias @RecomputeFieldValue(kind = Kind.NewInstance, declClassName = "java.io.ExpiringCache") // H r
421 private Target_java_io_ExpiringCache javaHomePrefixCache; COde It mOdIerS
422 }

36

Source: ‘ Red Hat

https:/github.com/oracle/graal/blob/aSca5bda7301447bb2c755134f8403e51621dfad/substratevm/src/com.oracle.svm.core/src/com/oracle/svm/core/jdk/FileSystemProviderSupport.java

https://github.com/oracle/graal/blob/a5ca5bda7301447bb2c755134f8403e51621dfa4/substratevm/src/com.oracle.svm.core/src/com/oracle/svm/core/jdk/FileSystemProviderSupport.java

\/
i\

gbicc: Class initialization example

abicc

public class Foo {

static final String NAME = "Foo"; Build time initialized
static final VarHandle NAME_GETTER;
static final long start = System.currentTimeMillis();

static {

try { Per-field <rtinit> re-initialize
NAME_GETTER = MethodHandles
.Lookup().findStaticVarHandle(Foo.class, "NAME", String.class); method
} catch(Throwable t) {

throw new RuntimeException(t);

}

new Thread(Helper::run).start(); $_patch class to move

Thread::start

37

Frameworks: Static Java's best friend

Favour build time work over runtime work
e Metadata scanning
e Generating code
e Avoid reflection

Do it once at build time, rather than every execution

Build time

~

JVM t i N J
O Main V

Framework initialized

N J
Y

Application initialized

38

#] QUARKUS

S MICRONAUT®

Faster JVM mode startup
+

Enabling native image startup

Static Java: Framework results

BOOT + First Response Time

Quarkus + Native
(via GraalvM)

0.016 Seconds

Quarkus+ JIT - 0.943 Seconds
(via Open]DK)

thee e e @@ e e @ e e e Qe i e @ e b @ e b k@ e e e @ e e @ bbb @ ekt e @)

Quarkus + Native

(vi: iy I 0.042 Seconds

Benefits: Costs:

e \ery fast startup e Closedworld
e Small on disk footprint / variable runtime footprint e Changes (Substitutions) required

e Fasttime to peak perf / lower peak? e Dynamic vs. static disparity

40

‘ RedHat

Source https:/quarkus.io/

https://quarkus.io/

Is there a middle ground?

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Checkpoint and Restore

e CRIU operates at the operating system process level
o Saves the running process to disk

o Allows it to be restored later... many times!

CR’ ,Y' e Copies everything rather than trying to provide just the 3 essentials

e Run the application to “good” point. Continue from there

o "Good” points are application and use case specific

42

https:/www.criu.org/Main _Page

https://www.criu.org/Main_Page

43

Checkpoint and Restore

Build time

-

Checkpoint: Run time

CR)IS

https://www.criu.org/Main_Page

\=

Restore: continue Run time

44

Checkpoint and Restore

Build time

-

Checkpoint: Run time

CR)IS

https://www.criu.org/Main_Page

\=

Restore: continue Run time

Restore: continue Run time

Restore: continue Run time

Restore: continue Run time

Checkpoint and Restore 500 Clhelongtrs

1000+ + Classes
1000+ + <clinit>

Build time

Later
checkpoints |
need more fixup!

\ ized

45

Checkpoint and Restore

Open)DK
CRaC

Coordinated Restore at
Checkpoint

https:/openjdk.org/projects/crac/
https://qgithub.com/CRaC

46

Open@

CRIU Support
(aka Semeru InstantOn)

https:/qgithub.com/orgs/eclipse-openi9/projects/1

https://github.com/orgs/eclipse-openj9/projects/1
https://openjdk.org/projects/crac/
https://github.com/CRaC

47

Checkpoint and Restore concerns

Capturing the whole process also captures things you wish it didn’t

O

Random / SecureRandom

Time deltas now include time between checkpoint and restore [
m System.nanolime needs more care

m System.currentTimelnMillis is just a mess

Environment variables may not be available till restore
m Common deployment tool for e.g. ports, host names, etc

m Java expects them to be immutable once fetched

Number of CPUs, particular CPU instructions, etc

m Portability of the running JVM, jitted code, and libraries

Checkpoint and Restore also needs fixups

e Project CRaC and OpenJ9 CRIU support provide Lifecycle APIs

o Applications still need changes!

o Callbacks to let them fix their state at checkpoint/restore

o Core Class library addressed by the projects

jdk.crac.Resource interface

e Fixups required depend on checkpoint point and use case
CRIUSupport

:registeriPre,Post}SnapshotHook(Runnable)

o No general way to say “this is checkpoint ready”

e Not just correctness, may also provide better performance
o JDKlazy init can be converted to pre-checkpoint init for CRIU

48

Checkpoint and Restore results

Normalized Startup Time
(lower is better)

120
100
80
60
40

20

,] 1 —

Pingperf Rest crud AcmeAir Microservice Main

m Baseline Startup m InstantOn

Benefits: Costs:

e Fast startup for applications that can't optinto static Java e Big on disk footprint / same runtime footprint
e Open world. Supports existing monitoring tools e Changes (Lifecycle API) required
e Same peak performance as dynamic JVM e Pre vs Post checkpoint disparity

49

Source https://openliberty.io/blog/2022/09/29/instant-on-beta.html

https://openliberty.io/blog/2022/09/29/instant-on-beta.html

étatic Island

Dynamic Island

Spectrum!

50

Célll for Discussion: New Project: Leyden

mark.reinhold at oracle.com mark.reinhold at oracle.com
Mon Apr 27 16:38:55 UTC 2020

o Previous message: Type-parameterized complement to Object.equals(Object)

o Next message: Call for Discussion: New Project: Leyden
» Messages sorted by: [date] [thread | [subject | [author]

I hereby invite discussion of a new Project, Leyden, whose primary goal
will be to address the long-term pain points of Java’s slow startup time,
slow time to peak performance, and large footprint.

Leyden will address these pain points by introducing a concept of _static
images_ to the Java Platform, and to the JDK.

- A static image is a standalone program, derived from an application,
which runs that application -- and no other.

- A static image is a closed world: It cannot load classes from outside
the image, nor can it spin new bytecodes at run time.

These two constraints enable build-time analyses that can remove unused
classes and identify class initializers which can be run at build time,
thereby reducing both the size of the image and its startup time. These
constraints also enable aggressive ahead-of-time compilation, thereby
reducing the image’s time to peak performance.

Static images are not for everyone, due to the closed-world constraint,
nor are they for every type of application. They often require manual
configuration in order to achieve the best results. We do, however,
expect the results to be worthwhile in important deployment scenarios
such as small embedded devices and the cloud.

51

https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html

.. address ... low startup time,
slow time to peak
performance,

and large footprint

.. _Staticimages_ to the
Java Platform

Project Leyden: Beginnings

mark.reinhold at oracle.com mark reinhold at oracle.com
Fri May 20 14:42:02 UTC 2022

* Previous message (by thread): Welcome to Project Leyden!

» Messages sorted by: [_date | [_thread | [_subject | [_author |

The ultimate goal of this Project, as stated in the Call for Discussion
[1], is to address the long-term pain points of Java’s slow startup time,
slow time to peak performance, and large footprint.

We will explore a spectrum of constraints, weaker than the closed-world
constraint, and discover what optimizations they enable. The resulting
optimizations will almost certainly be weaker than those enabled by the
closed-world constraint. Because the constraints are weaker, however,
the optimizations will likely be applicable to a broader range of
existing code -- thus they will be more useful to more developers.

We will work incrementally along this spectrum of constraints, starting
small and simple so that we can develop a firm understanding of the
changes required to the Java Platform Specification. Along the way we
will strive, of course, to preserve Java’s core values of readability,
compatibility, and generality.

We will lean heavily on existing components of the JDK including the
HotSpot JVM, the C2 compiler, application class-data sharing (CDS), and
the “jlink™ linking tool.

In the long run we will likely embrace the full closed-world constraint
in order to produce fully-static images. Between now and then, however,
we will develop and deliver incremental improvements which developers can
use sooner rather than later.

Let us begin!

- Mark https:/mail.openjdk.org/pipermail/leyden-dev/2022-May/O00001.html

We will explore a spectrum of
constraints, weaker than the
closed-world constraint, and discover
what optimizations they enable.

.. applicable to a broader range of
existing code -- thus they will be
more useful to more developers.

Leyden: Need source changes to say what we mean_/

GraalVM. iy Open)DK

e Every solution has required changes to the code to enable fast startup

o OpendDK: Lazy initialization: write Init-On-Demand-Holder pattern
o Native Image: Closed world constraint and related consequences

o CRIU: Lifecycle API, portability changes

e Fundamental truth: old code + new semantics => errors!

(or at least change the program’s meaning)

e Javalanguage changes are needed!
o One way to say when something should be initialized

53

Leyden: need a tool to apply constraints

Jlink generates a customized runtime
given a JVM and a set of modules.

Already has a plugin architecture that
allows modifying Classes

-
—

‘5)
o Java
O
=

54

Leyden: Jlink experiments

e Ex1. Pre-generate Lambda classes during jlink process
o Lots of user visible changes from this!
m NestMate / NestHost changes for both generated classes and their
hosts
Class names change - from Foo$1/0x0000000800c019f0 -> Foo$1
Lambda classes are no longer hidden anon classes
Class.forName can find them

Timing of class loads

Stack traces
|
e Ex.2: Convert Class.forName -> Idc
o Exception blocks
o Class initialization
e Javaspecification changes needed!

55

o Need to know what changes are valid according to the spec

56

Leyden: Requirements

Leyden needs to give us:
o Language changes to say what we mean
o Specification changes about what can validly change

o Atool to apply the “spectrum of constraints” and generate Leyden images

And some way to generate the three essentials from language+spec+tool:
o Cached Class metadata
o Heap archives
o AOT compiled code

That all translates into improvements in startup time!

Wrap up G Faa l Vi

e Determine how important startup actually is for your workloads

e Pick the option that best matches your use case: JVM, CRIU or Native Image
o Beware the tradeoffs between throughput / startup / footprint
o Operationalize it!

o Share your experience on the OpenJDK Leyden list

e Shift work to build time where possible

o New style frameworks are great for helping with this!

e Prepare to make changes

o All solutions require some source changes, Leyden will be no different

57

Th a n k y O u IN linkedin.com/company/red-hat

B youtube.com/user/RedHatVideos

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning f facebook.com/redhatinc

support, training, and consulting services make
Red Hat a trusted adviser to the Fortune 500. Y twitter.com/RedHat

