
The Fast Startup
Landscape is Expanding!

Dan Heidinga

Principal Software Engineer

 @danheidinga

 DanHeidinga

1

Startup

3

https://twitter.com/kcpeppe/status/1568282140869275648

Startup

4

https://twitter.com/DanHeidinga/status/1568425183538470913

5

Frequent deployments

Fast Startup

Cloud CI/CD Serverless

cgi-bin model of deployment

Scale to zero

Microservices

Horizontal scaling

Why do we care about startup? More deployments!

6

Fast Startup

RAM x CPU = $$

Startup of a typical JavaEE/JakartaEE framework

7

Build time Run time

3 Classloaders
~500 Classes
~160 <clinit>

100+ Classloaders
1000+ Classes
1000+ <clinit>

100++ Classloaders
1000++ Classes
1000++ <clinit>

JVM to main

Framework initialized

Application initialized

Serving actual requests

“There are more [sources of delay] than are dreamt of in your philosophy”
– Hamlet (with apologies)

8

Build time Run time

3 Classloaders
~500 Classes
~160 <clinit>

100+ Classloaders
1000+ Classes
1000+ <clinit>

100++ Classloaders
1000++ Classes
1000++ <clinit>

JVM to main

Framework initialized

Application initialized

Serving actual requests

Copy time
Container start
Provision services
…..

Scaling overhead

Java: Dynamic Island

9

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Dynamic Island

10

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Java: Dynamic Island

11

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Class initialization

Java: Dynamic Island

12

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Class initialization
Field and Method
resolution

Java: Dynamic Island

13

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Class initialization
Field and Method
resolution

MethodHandles
Reflection
Dynamic class generation

Java: Dynamic Island

14

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Class initialization
Field and Method
resolution

MethodHandles
Reflection
Dynamic class generation

Dynamic classloading

Java: Dynamic Island

15

https://friendlystock.com/tropical-island-free-vector-clipart/

Dynamic classloading

Class initialization
Field and Method
resolution

MethodHandles
Reflection
Dynamic class generation

Dynamic classloading

Class initialization

Java: Dynamic Island

16

https://friendlystock.com/tropical-island-free-vector-clipart/

Interpretation
Profiling
Dynamic compilation (and recompilation)

Agents
Redefining classes
Hooking events

Dynamic classloading

Class initialization
Field and Method
resolution

MethodHandles
Reflection
Dynamic class generation

Dynamic classloading

Class initialization

Java: Dynamic Island

17

https://friendlystock.com/tropical-island-free-vector-clipart/

Java’s extremely dynamic nature is partly to blame for the “slow to start” complaints

Always a little jealous of static island

18
https://friendlystock.com/tropical-island-free-vector-clipart/
https://vectorportal.com/vector/spyglass-icon-vector-clip-art/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Island

https://friendlystock.com/tropical-island-free-vector-clipart/
https://vectorportal.com/vector/spyglass-icon-vector-clip-art/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Originally because of footprint!

19

https://friendlystock.com/tropical-island-free-vector-clipart/

Static Island

https://security.cs.pub.ro/summer-school/wiki/session/03

https://friendlystock.com/tropical-island-free-vector-clipart/

20

N * JVMs + 1 * Shared MetaData = memory footprint savings

Shared Class MetaData

21

And cached Java Objects for faster startup

CDS / AppCDS / DynamicCDS

Pregenerated list of classes

Dynamic set of classes at shutdown

And dynamic AOT for faster startup

SharedClasses

Dynamic set of classes from

● default loaders,

● URLClassloader and

● from opted-in custom loaders

Meta data archives enable other optimizations
Start using these features today if not already!

22

CDS: Archived Heaps

23

SharedClasses: dynamic AOT

Shared Classes
 Cache

AOTROM Classes

$ java –Xshareclasses ...

New phases: cold vs warm runs

24

New phases: cold vs warm runs

25

Build time Run time

New phases: cold vs warm runs

26

Build time Run time

Container deployments are immutable!
Every run is a “first run”
No warm runs apart from what happened at build time

Using these tools involves more work in the build phase!

27

Cached
Class

metadata

Heap
archives

AOT
code

The three essentials for fast startup
Starting to appear in various forms!

What would static Java look like?

28

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Island

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Java: Static Island?

29

https://friendlystock.com/tropical-island-free-vector-clipart/

Java: Static Island?

30

https://friendlystock.com/tropical-island-free-vector-clipart/

Interpretation
Profiling
Dynamic compilation (and recompilation)

Agents
Redefining classes
Hooking events

Dynamic classloading

Class initialization???
Field and Method
resolution

MethodHandles
Reflection
Dynamic class generation

Dynamic classloading

Class initialization???

BuildTime Classloading

Everything resolved at compile time

Needs to be
pre-configured

Ahead of time compiled Service providers?

Class generators?

Module Layers?

What would static Java look like?

31

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Island

● All classes - application & class library - available at build time

○ No runtime class generation!

○ Closed world

○ Classloaders?

● Compiled to native code at build time

○ No decompilation / recompilation

○ Class initialization checks remain in the compiled code

○ AOT “guesses” about what will happen… and where it will run

○ Profiling?

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Java challenges

32

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Island

● What about classloaders?

○ Classes are available at build time… only class/module path?

○ How does this work with application specific loaders?

○ No (runtime) generated code!

● Native code is 3-5x larger than bytecode

○ Need some way to trim dead code

○ Without removing indirectly accessed code (reflection /

methodhandles)

● And it would be nice to initialize some of those classes at buildtime

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

33

Source: Initialize Once, Start Fast: Application Initialization at Build Time (Wimmer et al. OOPSLA 2019)

Virtuous cycle:

● Points-to analysis allows dead code elimination (DCE)

● Heap snapshotting allows initializing code at buildtime

● Running class initialization at buildtime allows more DCE (ie: <clinit> methods)

● … and repeat

http://www.christianwimmer.at/Publications/Wimmer19a/Wimmer19a.pdf

Static Java: the question of class initialization

34

● When to initialize this class?

○ Buildtime?

○ Runtime?

○ Both (aka re-initialize)?

● Developer needs to decide for

each class when it should be

initialized

● Default was buildtime, then

runtime, soon to be reinitialize

35

Source: https://www.rawpixel.com/image/447646/free-photo-image-noodles-asian-food-pho-soup

What do class initialization

and soup have in common?

Everything gets mixed

together!

https://www.rawpixel.com/image/447646/free-photo-image-noodles-asian-food-pho-soup

Static Java: Substitutions

36

Source:
https://github.com/oracle/graal/blob/a5ca5bda7301447bb2c755134f8403e51621dfa4/substratevm/src/com.oracle.svm.core/src/com/oracle/svm/core/jdk/FileSystemProviderSupport.java

● Essential mechanism to “fix” code

to support buildtime initialization

● Easy to change the meaning of the

program by breaking invariants

○ Dynamic vs static disparity

● Easy to get out of sync as

maintained separately from the

code it modifies

https://github.com/oracle/graal/blob/a5ca5bda7301447bb2c755134f8403e51621dfa4/substratevm/src/com.oracle.svm.core/src/com/oracle/svm/core/jdk/FileSystemProviderSupport.java

qbicc: Class initialization example

37

● Build time initialized

● Per-field <rtinit> re-initialize

method

● $_patch class to move

Thread::start

Frameworks: Static Java’s best friend

38

Build time

JVM to main

Framework initialized

Favour build time work over runtime work
● Metadata scanning
● Generating code
● Avoid reflection

Do it once at build time, rather than every execution

Application initialized

39

Faster JVM mode startup
+

Enabling native image startup

Static Java: Framework results

40

Source https://quarkus.io/

Costs:

● Closed world

● Changes (Substitutions) required

● Dynamic vs. static disparity

Benefits:

● Very fast startup

● Small on disk footprint / variable runtime footprint

● Fast time to peak perf / lower peak?

https://quarkus.io/

Is there a middle ground?

41

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Static Island

https://friendlystock.com/tropical-island-free-vector-clipart/
https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2F~jeff%2FDuke%2Fpng%2FHips.png

Checkpoint and Restore

42

https://www.criu.org/Main_Page

● CRIU operates at the operating system process level

○ Saves the running process to disk

○ Allows it to be restored later… many times!

● Copies everything rather than trying to provide just the 3 essentials

● Run the application to “good” point. Continue from there

○ “Good” points are application and use case specific

https://www.criu.org/Main_Page

Checkpoint and Restore

43

https://www.criu.org/Main_Page

Build time Checkpoint: Run time

Restore: continue Run time

Checkpoint and Restore

44

https://www.criu.org/Main_Page

Build time Checkpoint: Run time

Restore: continue Run time

Restore: continue Run time

Restore: continue Run time

Restore: continue Run time

Checkpoint and Restore

45

Build time Run time

3 Classloaders
~500 Classes
~160 <clinit>

100+ Classloaders
1000+ Classes
1000+ <clinit>

100++ Classloaders
1000++ Classes
1000++ <clinit>

JVM to main

Framework initialized

Application initialized

Later
checkpoints

need more fixup!

Checkpoint and Restore

46

https://github.com/orgs/eclipse-openj9/projects/1

CRIU Support
(aka Semeru InstantOn)

CRaC
Coordinated Restore at

Checkpoint

https://openjdk.org/projects/crac/
 https://github.com/CRaC

https://github.com/orgs/eclipse-openj9/projects/1
https://openjdk.org/projects/crac/
https://github.com/CRaC

Checkpoint and Restore concerns

47

● Capturing the whole process also captures things you wish it didn’t

○ Random / SecureRandom

○ Time deltas now include time between checkpoint and restore

■ System.nanoTime needs more care

■ System.currentTimeInMillis is just a mess

○ Environment variables may not be available till restore

■ Common deployment tool for e.g. ports, host names, etc

■ Java expects them to be immutable once fetched

○ Number of CPUs, particular CPU instructions, etc

■ Portability of the running JVM, jitted code, and libraries

Checkpoint and Restore also needs fixups

48

● Project CRaC and OpenJ9 CRIU support provide Lifecycle APIs

○ Applications still need changes!

○ Callbacks to let them fix their state at checkpoint/restore

○ Core Class library addressed by the projects

● Fixups required depend on checkpoint point and use case

○ No general way to say “this is checkpoint ready”

● Not just correctness, may also provide better performance

○ JDK lazy init can be converted to pre-checkpoint init for CRIU

jdk.crac.Resource interface

CRIUSupport

::register{Pre,Post}SnapshotHook(Runnable)

Checkpoint and Restore results

49

Source https://openliberty.io/blog/2022/09/29/instant-on-beta.html

Benefits:

● Fast startup for applications that can’t opt into static Java

● Open world. Supports existing monitoring tools

● Same peak performance as dynamic JVM

Costs:

● Big on disk footprint / same runtime footprint

● Changes (Lifecycle API) required

● Pre vs Post checkpoint disparity

https://openliberty.io/blog/2022/09/29/instant-on-beta.html

50

Static Island

Spectrum! Dynamic Island

51

https://mail.openjdk.java.net/pipermail/discuss/2020-April/005429.html

… address … low startup time,
slow time to peak
performance,
and large footprint

… _static images_ to the
Java Platform

52

We will explore a spectrum of
constraints, weaker than the
closed-world constraint, and discover
what optimizations they enable.

… applicable to a broader range of
existing code -- thus they will be
more useful to more developers.

………

https://mail.openjdk.org/pipermail/leyden-dev/2022-May/000001.html

Leyden: Need source changes to say what we mean

53

● Every solution has required changes to the code to enable fast startup

○ OpenJDK: Lazy initialization: write Init-On-Demand-Holder pattern

○ Native Image: Closed world constraint and related consequences

○ CRIU: Lifecycle API, portability changes

● Fundamental truth: old code + new semantics => errors!

 (or at least change the program’s meaning)

● Java Language changes are needed!

○ One way to say when something should be initialized

Leyden: need a tool to apply constraints

54

jlink

Jlink generates a customized runtime
given a JVM and a set of modules.

Already has a plugin architecture that
allows modifying Classes

Leyden: Jlink experiments

55

● Ex.1: Pre-generate Lambda classes during jlink process

○ Lots of user visible changes from this!

■ NestMate / NestHost changes for both generated classes and their

hosts

■ Class names change - from Foo$1/0x0000000800c019f0 -> Foo$1

■ Lambda classes are no longer hidden anon classes

■ Class.forName can find them

■ Timing of class loads

■ Stack traces

■ …..

● Ex.2: Convert Class.forName -> ldc

○ Exception blocks

○ Class initialization

● Java specification changes needed!

○ Need to know what changes are valid according to the spec

Leyden: Requirements

56

● Leyden needs to give us:

○ Language changes to say what we mean

○ Specification changes about what can validly change

○ A tool to apply the “spectrum of constraints” and generate Leyden images

● And some way to generate the three essentials from language+spec+tool:

○ Cached Class metadata

○ Heap archives

○ AOT compiled code

● That all translates into improvements in startup time!

Wrap up

57

● Determine how important startup actually is for your workloads

● Pick the option that best matches your use case: JVM, CRIU or Native Image

○ Beware the tradeoffs between throughput / startup / footprint

○ Operationalize it!

○ Share your experience on the OpenJDK Leyden list

● Shift work to build time where possible

○ New style frameworks are great for helping with this!

● Prepare to make changes

○ All solutions require some source changes, Leyden will be no different

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

58

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

